WebPUM: A Web-based recommendation system to predict user future movements

نویسندگان

  • Mehrdad Jalali
  • Norwati Mustapha
  • Md Nasir Sulaiman
  • Ali Mamat
چکیده

0957-4174/$ see front matter 2010 Elsevier Ltd. A doi:10.1016/j.eswa.2010.02.105 * Corresponding author. Address: Department of Sof Engineering, Islamic Azad University of Mashhad, Ma E-mail addresses: [email protected], mehr [email protected] (N. Mustapha), nasir@fs Sulaiman), [email protected] (A. Mamat). Web usage mining has become the subject of exhaustive research, as its potential for Web-based personalized services, prediction of user near future intentions, adaptive Web sites, and customer profiling are recognized. Recently, a variety of recommendation systems to predict user future movements through Web usage mining have been proposed. However, the quality of recommendations in the current systems to predict user future requests in a particular Web site is below satisfaction. To effectively provide online prediction, we have developed a recommendation system called WebPUM, an online prediction using Web usage mining system and propose a novel approach for classifying user navigation patterns to predict users’ future intentions. The approach is based on the new graph partitioning algorithm to model user navigation patterns for the navigation patterns mining phase. Furthermore, longest common subsequence algorithm is used for classifying current user activities to predict user next movement. The proposed system has been tested on CTI and MSNBC datasets. The results show an improvement in the quality of recommendations. Furthermore, experiments on scalability prove that the size of dataset and the number of the users in dataset do not significantly contribute to the percentage of accuracy. 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

A Recommender System Approach for Classifying User Navigation Patterns Using Longest Common Subsequence Algorithm

Prediction of user future movements and intentions based on the users’ clickstream data is a main challenging problem in Web based recommendation systems. Web usage mining based on the users’ clickstream data has become the subject of exhaustive research, as its potential for web based personalized services, predicting user near future intentions, adaptive Web sites and customer profiling is re...

متن کامل

A Recommender System for Online Personalization in the WUM Applications

foreseeing of user future movements and intentions based on the users’ clickstream data is a main challenging problem in Web based recommendation systems. Web usage mining based on the users’ clickstream data has become the subject of exhaustive research, as its potential for web based personalized services, predicting user near future intentions, adaptive Web sites and customer profiling is re...

متن کامل

QoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering

Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2010